mixed benzoins. Benzoin itself as starting material gave benzoin as the end product.

2. An expeditious method for the preparation of α -aminobenzylphenylcarbinols is the catalytic reduction of the oximes of benzoins.

3. α -Aminobenzyl phenyl ketones are produced by the oxidation of α -aminobenzyl phenyl carbinols.

4. α -Acetaminobenzyl phenyl ketones are produced by the oxidation of α -acetaminobenzylphenylcarbinols. The acetyl group may be removed by hydrolysis.

5. In the catalytic reduction of 2-chloro- α -hydroxybenzyl-4-methoxyphenyl ketoxime, the chlorine is largely split from the nucleus.

TUCKAHOE, NEW YORK

RECEIVED JULY 13, 1933 PUBLISHED OCTOBER 6, 1933

[CONTRIBUTION FROM KEDZIE CHEMICAL LABORATORY, MICHIGAN STATE COLLEGE]

Action of Aromatic Alcohols on Aromatic Compounds in the Presence of Aluminum Chloride. VI. Condensation of Phenylpropylcarbinol and α -Chlorobutylbenzene with Phenol

BY RALPH C. HUSTON AND HAROLD W. STRICKLER

The work here described may be considered a continuation of that with Lewis and Grotemut¹ on the condensation of secondary alcohols with phenols.

The phenylpropylcarbinol used was prepared from propyl bromide and benzaldehyde by the Grignard reaction. A yield of 81% was obtained when the reactants were used in the proportion of one of propyl bromide to one of magnesium to four-fifths of benzaldehyde^{2.3} and when the reaction mixture was cooled to a slight visible reaction during the preparation of the Grignard reagent and in ice during the addition of the benzaldehyde.⁴ Because of the lack of agreement⁵ as to the boiling point and density of this compound these constants were carefully redetermined: b. p. $94-96^{\circ}$ (6 mm.), sp. gr. $18/4^{\circ}$, 0.974.

Condensation of one mole of phenylpropylcarbinol (or α -chlorobutylbenzene) with one mole of phenol in petroleum ether at 20–25°, by means of one-half mole of aluminum chloride,⁶ gave a 20% yield of 4-(α -phenylbutyl)phenol and a 6% yield of 2-(α -phenylbutyl)-phenol. These were separated by repeated fractionation at reduced pressure. Solution of the crude

(4) Rheinboldt and Roleff, J. prakt. Chem., 109, 175 (1925).

⁽¹⁾ Huston. Lewis and Grotemut. THIS JOURNAL, 49, 1365 (1927).

⁽²⁾ Meisenheimer, Ann., 442, 180 (1925).

⁽³⁾ Gilman and McCracken, THIS JOURNAL, 45, 159 (1923).

⁽⁵⁾ Marshall and Perkin, J. Chem. Soc., **59**, 885 (1891); Grignard, Chem. Centr., 11, 7622 (1901); Klages, Ber., **37**, 2312 (1904); Puyal and Montague, Bull. soc. chim., **27**, 857 (1920); Strauss and Grindel. Ann., **439**, 276, 312 (1924).

⁽⁶⁾ Huston, THIS JOURNAL, 46, 2777 (1924).

product in Claisen's alcoholic potassium hydroxide and extraction with petroleum ether gave no evidence of the formation of α -phenylbutyl phenyl ether (see table).

Condensation of α -chlorobutylbenzene⁷ with phenol by Claisen's method⁸ gave a 13% yield of 2-(α -phenylbutyl)-phenol, a 12% yield of phenylbutylene⁹ and a 10% yield of α -phenylbutyl phenyl ether. The last two products were obtained by fractionation of the petroleum ether extract of the alcoholic potassium hydroxide solution.

Bromination of 4-(α -phenylbutyl)-phenol in cold chloroform with two moles of bromine gave 4-(α -phenylbutyl)-2,6-dibromophenol. This was also produced by condensing phenylpropylcarbinol with 2,6-dibromophenol by means of aluminum chloride.

The preparation of 2-(α -phenylbutyl)-4,6-dibromophenol was effected either by bromination of the substituted phenol or from 2,4-dibromophenol by the Claisen reaction.

There T

Esters were prepared by the pyridine method.¹⁰

TABLE I			
Physical appearance			
Mats of fine silky threads from pet. ether.			
(Shows	tendency to swe	ll and r	etain solvent)
Viscous oil			
Mobile colorless líquid (sp. gr. at $25^{\circ}/4^{\circ}$ 1.0067,			
n_{20} 1.5507)			
Viscous oil	l i		
Viscous oil			
Monoclinic crystals			
Carbon, % Hydrogen, %			
Carbo Caled.	Found	Caled.	Found
84.91	84.89 84.64	8.02	$7.97 \ 7.94$
84,91	84.61 84.70	8.02	8.025 8.065
84,91	84.77 84.76	8.02	8.01 7.96
Br, 41.63	41.49		
Br, 41.63	41.36		
83.58	83.4	6.71	6.76
	Mats of $($ Shows Viscous oi Mobile col n_{20} 1.550 Viscous oi Viscous oi Viscous oi Monoclinic Carbo Calcd. 84.91 84.91 84.91 Br, 41.63 Br, 41.63	Physical appMats of fine silky threa(Shows tendency to sweet)Viscous oilMobile colorless liquid (sp n_{20} 1.5507)Viscous oilViscous oilMonoclinic crystalsCaled.Caled.Found84.9184.8984.6184.9184.6184.9184.7784.9184.7784.9184.76Br, 41.6341.36	Physical appearanceMats of fine silky threads from (Shows tendency to swell and rViscous oilMobile colorless líquid (sp. gr. at 2 n_{20} 1.5507)Viscous oilViscous oilViscous oilMonoclinic crystalsCalcd.S4.9184.7784.768.02Br, 41.6341.36

The benzoyl, benzene sulfonyl and *p*-toluene sulfonyl esters of $2-(\alpha - phenylbutyl)$ -phenol were heavy oils which failed to crystallize.

EAST LANSING, MICHIGAN

RECEIVED JULY 17, 1933 PUBLISHED OCTOBER 6, 1933

4318

⁽⁷⁾ This was prepared from the pure alcohol. It boiled at $73-75^{\circ}$ (6 mm.) and had a sp. gr. at $18/4^{\circ}$ 1.0182. Cf. Klages, Ber., 37, 2312 (1904).

⁽⁸⁾ Claisen, Ann., 442, 210 (1925).

⁽⁹⁾ Radziszewski, Ber., 9, 260 (1876).

⁽¹⁰⁾ Einhorn and Holland, Ann., 301, 95 (1898).